
Compiler Technology in

Open Shading Language

Larry Gritz

Sony Pictures Imageworks

Monday, August 15, 2011

sony pictures

•Designed for physically-based GI

•Scales to production use

•A language spec that could be used by any renderer

•A library that can be embedded in CPU renderers

•Open source

•In production now!

Monday, August 15, 2011

sony pictures

•(Alice in Wonderland images omitted)

Monday, August 15, 2011

sony pictures

•Black boxes, can’t reason about them

•Can’t sample, defer, or reorder

•Suboptimal for a modern ray tracer

•Units are sloppy, hard to be physically correct

•If C/C++: difficult, versionitis, can crash, hard to

globally optimize.

•Hardware dependence & limitations

Monday, August 15, 2011

sony pictures

•OSL shaders don’t return colors

•Return a symbolic rep that can be “run” later

–Act “as if” they are a radiance value

–But aren’t evaluated until later

•View independent

•Consistent units (radiance)

•Can be sampled

•Unify reflection, transparency, emission

Monday, August 15, 2011

sony pictures

•Similar to RSL/GSL, but evolved & easier

•Separate description vs implementation
•End versionitis nightmare

•Late-stage optimization

•Hide renderer internals

•Renderer control of rays / physical shading

• no light loops or trace calls

•Lazy running of layers

•Closures describe materials/lights

•Automatic differentiation

•No crashing, NaN, etc.

•Allow multiple back-ends

Monday, August 15, 2011

sony pictures

•Compiler (oslc) precompiles individual source modules

(.osl) to bytecode (.oso)

•At render time, material networks are assembled

•JIT to x86 to execute

•OSL runtime execution is a library

•Renderer provides a callback interface

Monday, August 15, 2011

sony pictures

gamma.osl

gamma.oso

Monday, August 15, 2011

sony pictures

wl�de54"5 tyyo:

gpagtepxwd

�uxC

g

s

onis

gpagtepxwd

�uxC

g

s

onis

wl�de52"5 rlx:

rwxxw

ot� onis

ruxm"m

wl�de53"5 rlxm

rwxxw

ot� onis

rux0".

et�rg

reut�

u��o

ot
wl�de5m"5 gdam

wl�de5:"5 gda:

2et�rg"sa2

2reut�"sa2

Monday, August 15, 2011

sony pictures

•First try: SIMD interpreter

–render batches of points at once

–interpret one instruction at a time, all points in lockstep

–analyze to find uniform values

–amortize overhead over the grid

Monday, August 15, 2011

sony pictures

•Works great if batches are big enough

•Easy for primary rays, secondary rays incoherent

•Batches small, too much overhead cohering

Monday, August 15, 2011

sony pictures

•Next try: translate oso into LLVM IR, JIT

•no exploitation of ‘uniform’ values

•but no interpreter overhead

•no need to try to scrape together coherent rays

•LLVM optimizer

•Generate full IR for some ops

•Others “call” functions, inlined by LLVM

•Generate enter/exit code

•Lazy evaluation of shader nodes

Monday, August 15, 2011

sony pictures

•LLVM vastly outperformed interpreter

•Greatly simplified the entire system

–other than LLVM dependency

•Simplified renderer, no need for batches

Monday, August 15, 2011

sony pictures

C = texture (“foo.exr”, s, t, ...)

•To properly filter this texture lookup, you want to know

how s & t vary over a pixel area.

•dsdx, dsdy, dtdx, dtdy

Monday, August 15, 2011

sony pictures

•Most renderers calculate derivatives by:

• Ignoring the problem

•Having “special” texture coordinates

Monday, August 15, 2011

sony pictures

•Most renderers calculate derivatives by:

• Ignoring the problem

•Having “special” texture coordinates

•Computing on grids (Reyes)

•

Monday, August 15, 2011

sony pictures

•Most renderers calculate derivatives by:

• Ignoring the problem

•Having “special” texture coordinates

•Computing on grids (Reyes)

•Shade rays as 3 point grids (Gritz, JGT ‘96)

Monday, August 15, 2011

sony pictures

•Most renderers calculate derivatives by:

• Ignoring the problem

•Having “special” texture coordinates

•Computing on grids (Reyes)

•Shade rays as 3 point grids (Gritz, JGT ‘96)

•We don’t have grids

•We don’t want to compute extra points

•We want derivs of arbitrary expressions

Monday, August 15, 2011

sony pictures

•Use dual arithmetic (Piponi, JGT 2004)

•Each variable can carry d/dx and d/dy differentials: x

= {val, dx, dy}

•Define math ops on these dual variables

Monday, August 15, 2011

sony pictures

template<class T>

Dual2<T> operator* (const Dual2<T> &a,

const Dual2<T> &b)

{

return Dual2<T> (a.val()*b.val(),

a.val()*b.dx() + a.dx()*b.val(),

a.val()*b.dy() + a.dy()*b.val());

}

Monday, August 15, 2011

sony pictures

•Find all data dependencies

•add R, A, B ➞ R depends on A and B

• “w” args to an op depend on all the “r” args to that op

•Only some ops take derivs of their args

aastep, area, displace, Dx, Dy, environment, texture

•Mark those symbols as “needing derivatives”

•And so on for their dependencies...

•Careful about connected shader parameters

Monday, August 15, 2011

sony pictures

•Now we know which symbols need derivs

–Renderer supplies derivs of (P, u, v, interpolated vars)

•Ops involving them generate deriv IR

–shortcut: if the w args of an op don’t need derivs, just do the non-deriv

computations

•In practice, ~5% of symbols need to carry derivs

•Total execution cost of arbitrary derivs is <10%

Monday, August 15, 2011

sony pictures

•At runtime, we know:

–layout and connectivity of the shader network

–parameter values

•So we optimize the shader oso right before LLVM IR

Monday, August 15, 2011

sony pictures

•Unconnected, uninterpolated params ➞ constants

–also connected if upstream layer knows output value

Monday, August 15, 2011

sony pictures

•Until A is reassigned, or control flow

•This lets us treat a lot of variables as if they were constant within a

basic block.

Monday, August 15, 2011

sony pictures

assign A $constB (now we know A’s value)

•Until A is reassigned, or control flow

•This lets us treat a lot of variables as if they were constant within a

basic block.

Monday, August 15, 2011

sony pictures

assign A $constB (now we know A’s value)

assign A B (now we know A == B)

•Until A is reassigned, or control flow

•This lets us treat a lot of variables as if they were constant within a

basic block.

Monday, August 15, 2011

sony pictures

Monday, August 15, 2011

sony pictures

add A $constB $constC assign A $constD

Monday, August 15, 2011

sony pictures

add A $constB $constC assign A $constD

add A B $const0 assign A B

Monday, August 15, 2011

sony pictures

add A $constB $constC assign A $constD

add A B $const0 assign A B

div A A $const1 nop

Monday, August 15, 2011

sony pictures

add A $constB $constC assign A $constD

add A B $const0 assign A B

div A A $const1 nop

mul A B $const0 assign A $const0

Monday, August 15, 2011

sony pictures

Monday, August 15, 2011

sony pictures

add A A 0 nop

Monday, August 15, 2011

sony pictures

add A A 0 nop

add A A C nop

sub A A C

Monday, August 15, 2011

sony pictures

add A A 0 nop

add A A C nop

sub A A C

assign A B nop (B is an alias of A)

Monday, August 15, 2011

sony pictures

add A A 0 nop

add A A C nop

sub A A C

assign A B nop (B is an alias of A)

assign A B nop (A & B have the same value)

Monday, August 15, 2011

sony pictures

Monday, August 15, 2011

sony pictures

•Dead code elimination

–entire conditionals, loops

–assignments to variables that aren’t used again

Monday, August 15, 2011

sony pictures

•Dead code elimination

–entire conditionals, loops

–assignments to variables that aren’t used again

•Dead variable elimination

Monday, August 15, 2011

sony pictures

•Dead code elimination

–entire conditionals, loops

–assignments to variables that aren’t used again

•Dead variable elimination

•Dead shader parameter/output elimination

Monday, August 15, 2011

sony pictures

•Dead code elimination

–entire conditionals, loops

–assignments to variables that aren’t used again

•Dead variable elimination

•Dead shader parameter/output elimination

•Dead shader layer elimination

Monday, August 15, 2011

sony pictures

•Dead code elimination

–entire conditionals, loops

–assignments to variables that aren’t used again

•Dead variable elimination

•Dead shader parameter/output elimination

•Dead shader layer elimination

•Coalesce temporaries with nonoverlapping lifetimes

Monday, August 15, 2011

sony pictures

Monday, August 15, 2011

sony pictures

•Reduce code & symbols 95-98% before LLVM

–IR gen, LLVM opt, JIT in seconds, not minutes

–LLVM also optimizes its IR

Monday, August 15, 2011

sony pictures

•Reduce code & symbols 95-98% before LLVM

–IR gen, LLVM opt, JIT in seconds, not minutes

–LLVM also optimizes its IR

Monday, August 15, 2011

sony pictures

•Reduce code & symbols 95-98% before LLVM

–IR gen, LLVM opt, JIT in seconds, not minutes

–LLVM also optimizes its IR

•20-25% faster execution than old C shaders

–and safe! (no buffer overflows, crashes, etc.)

Monday, August 15, 2011

sony pictures

•(“The Amazing Spider-Man” shot omitted, sorry.)

Monday, August 15, 2011

sony pictures

•43 different shader masters (distinct .osl/oso)

•1885 shader groups (materials)

•140,964 shader instances (master + params)

•average 75 instances per group

•Load, runtime opt, LLVM IR/opt/JIT:

–5m22s across all threads (~26s per thread)

–out of a 3h22:00 render with 12 threads

–aside: more time assembling/loading than rendering

Monday, August 15, 2011

sony pictures

•Typical shader group pre-optimized:

–50-100k ops

–20-40k symbols (including temporaries)

•After runtime optimization:

–1k-5k ops

–100-2k symbols

–many shader groups eliminated entirely

Monday, August 15, 2011

sony pictures

•Texture:

–497M texture queries (each of which is a bicubic mipmap lookup,

more when anisotropic)

–~9500 textures (~6700 with unique texels)

–700 GB of texture referenced (not counting dupes)

–Runtime memory: 500 MB cache

–www.openimageio.org

Monday, August 15, 2011

sony pictures

•I’ve seen shader groups with 1.5M ops

•Not uncommon for >> 1 TB texture referenced

Monday, August 15, 2011

sony pictures

•Our shader library is converted

•Our shader writers are exclusively writing OSL

•All new shows using OSL

–The Amazing Spider-Man

–Men in Black 3

–Oz, the Great and Powerful

–other things I can’t say

•We’ve ripped out support for C shaders

Monday, August 15, 2011

sony pictures

•opensource.imageworks.com

•github.com/imageworks/OpenShadingLangage

•“New BSD” license

•This is really our live development tree!

Monday, August 15, 2011

sony pictures

•Small domain-specific language

•Separate implementation from description

•LLVM to JIT native code at runtime

•Extensive runtime optimization when network and

parameters are known

•Outperforms compiled C shaders

•Open source

Monday, August 15, 2011

sony pictures

•OSL developers: Cliff Stein, Chris Kulla, Alejandro

Conty, Solomon Boulos

•SPI renderer, shader teams, SW management

•Participants on the mail list

•Contact:

opensource.imageworks.com

lg@imageworks.com

Monday, August 15, 2011

