Compiler Technology in
Open Shading Language

Larry Gritz
Sony Pictures Imageworks

(’2 SIGGRAPH2011

Mo

Open Shading Language (OSL) 7 sccrerzor

*Designed for physically-based Gl

eScales to production use

* A language spec that could be used by any renderer
A library that can be embedded in CPU renderers
Qpen source

|n production now!

sony pictures

% aimageworks

*(Alice in Wonderland images omitted)

sony pictures

|mageworks

Monday, August 15, 2011

What’s wrong with shaders £ scorsenzor

eBlack boxes, can't reason about them

«Can’'t sample, defer, or reorder

e Suboptimal for a modern ray tracer

eUnits are sloppy, hard to be physically correct

o|f C/C++: difficult, versionitis, can crash, hard to
globally optimize.

Hardware dependence & limitations

sony pictures

% simageworks

R‘dhnc. d““"‘ @smGRAPHzoﬂ

«QSL shaders don't return colors

*Return a symbolic rep that can be “run” later

—Act “as if” they are a radiance value
—But aren’t evaluated until later

*\View independent

e Consistent units (radiance)

Can be sampled

e Unify reflection, transparency, emission

sony pictures

% simageworks

Monday, August 15, 2011

OSL goa" @ SIGGRAPH2011

eSimilar to RSL/GSL, but evolved & easier
e Separate description vs implementation

*End versionitis nightmare *No crashing, NaN, etc.
|_ate-stage optimization *Allow multiple back-ends
Hide renderer internals

Renderer control of rays / physical shading
* no light loops or trace calls

eLazy running of layers
*Closures describe materials/lights
e Automatic differentiation

sony pictures

% nimageworks

Monday, August 15, 2011

Syttom workflow @SIGGRApﬂzoﬂ

Compiler (oslc) precompiles individual source modules
(.osl) to bytecode (.0s0)

e At render time, material networks are assembled
«JIT to x86 to execute

*OSL runtime execution is a library

Renderer provides a callback interface

sony pictures

% nimageworks

Monday, August 15, 2011

—

Compiling shaders €2 siccanprzor

gamma.osl
shader gamma (color Cin = 1, gamma 0SO
float gam = 1, i
output color Cout = 1) |OpenShadinglLanguage 1.00
{ # Compiled by oslc 0.6.0
Cout = pow (Cin, 1/gam); shader gamma
} param color Cin 111
param float gam 1
oparam color Cout 111

temp float $tmpl
const float $const2 1

code = main__

gamma.osl:5
div $tmpl $const2 gam
POW Cout Cin $tmpl
end

sony pictures

|mageworks

» ‘. \
,.0 <,
"

Monday, August 15, 2011

Shader networks @SIGGRAPHZOﬁ

layer 1: "tex1" layer 3: "gam1"
texturemap gamma
"rings.tx" —| name Cout Cin Cout
'S 2.2 —/ gam
—t layer 5: "wood1"
wood
layer 2: "tex2" layer 4: "gam2"
rings G —
texturemap gamma
grain
"grain.tx" —| name Cout Cin Cout
'S 1.0 — gam
—t

W3S . sony pictures
%, _&Imageworks

e
& @

Monday, August 15, 2011

Interpreter vs LLVM
eFirst try: SIMD interpreter

—render batches of points at once

—interpret one instruction at a time, all points in lockstep
—analyze to find uniform values

—amortize overhead over the grid

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

Interpreter vs LLVM

*\Works great if batches are big enough
eEasy for primary rays, secondary rays incoherent
eBatches small, too much overhead cohering

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

l“t.’pf‘t.r VS LLV“ @SIGGRAPHZO“

Next try: translate oso into LLVM IR, JIT

*no exploitation of ‘uniform’ values

*but no interpreter overhead

*no need to try to scrape together coherent rays
oL LVM optimizer

e Generate full IR for some ops

*Others “call” functions, inlined by LLVM
 Generate enter/exit code

eLazy evaluation of shader nodes

sony pictures

% nimageworks

Monday, August 15, 2011

Interpreter vs LLVM

e LVM vastly outperformed interpreter

e Greatly simplified the entire system
—other than LLVM dependency

e Simplified renderer, no need for batches

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

C = texture (“foo.exr’, s, t, ...)

* To properly filter this texture lookup, you want to know
how s & t vary over a pixel area.

*dsdx, dsdy, dtdx, dtdy

sony pictures

|mageworks

*Most renderers calculate derivatives by:
*|gnoring the problem
*Having “special” texture coordinates

sony pictures

|mageworks

Monday, August 15, 2011

D‘ﬂvm @ SIGGRAPH2011

*Most renderers calculate derivatives by:
e |gnoring the problem
* Having “special” texture coordinates
 Computing on grids (Reyes)

sony pictures

% simageworks

Monday, August 15, 2011

D.ﬂvm @ SIGGRAPH2011

* Most renderers calculate derivatives by:

e |gnoring the problem

* Having “special” texture coordinates
 Computing on grids (Reyes)

 Shade rays as 3 point grids (Gritz, JGT '96)

sony pictures

% nimageworks

Monday, August 15, 2011

Mvm (2 SIGGRAPH2011

*Most renderers calculate derivatives by:

e |gnoring the problem

* Having “special” texture coordinates
 Computing on grids (Reyes)

 Shade rays as 3 point grids (Gritz, JGT '96)

\We don't have grids
We don't want to compute extra points
*\We want derivs of arbitrary expressions

sony pictures

% simageworks

Monday, August 15, 2011

Automatic differentiation
eUse dual arithmetic (Piponi, JGT 2004)

eEach variable can carry d/dx and d/dy differentials: X
= {val, dx, dy}

*Define math ops on these dual variables

@ SIGGRAPH2011

sony pictures

% nimageworks

Automatic differentiation

template<class T>

@ SIGGRAPH2011

Dual2<T> operator* (const Dual2<T> &a,
const Dual2<T> &b)

L) ¥
L) ¥

{
return Dual2<T> (a.val
a.val
a.val

!

L()*

b.val (),
b.dx() + a.dx()*b.val(),
b.dy() + a.dy()*b.val());

sony pictures

% nimageworks

Monday, August 15, 2011

Only some symbols need derive’ sconeco:

*Find all data dependencies
cadd R,A,B — R dependsonAandB

11 7 k6 L))

«“w" args to an op depend on all the “r" args to that op
*Only some ops take derivs of their args
aastep, area, displace, Dx, Dy, environment, texture
Mark those symbols as “needing derivatives”
e And so on for their dependencies...

e Careful about connected shader parameters

sony pictures

% nimageworks

Monday, August 15, 2011

D.ﬂv.tm op. @smGRAPHzoﬂ

*Now we know which symbols need derivs
—Renderer supplies derivs of (P, u, v, interpolated vars)

*Ops involving them generate deriv IR

—shortcut: if the w args of an op don’t need derivs, just do the non-deriv
computations

*In practice, ~5% of symbols need to carry derivs
 Total execution cost of arbitrary derivs is <10%

sony pictures

% nimageworks

Monday, August 15, 2011

e

Runtime optimization
At runtime, we know:

—layout and connectivity of the shader network
—parameter values

*So we optimize the shader oso right before LLVM IR

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

Runtime optimization

Unconnected, uninterpolated params — constants
—also connected if upstream layer knows output value

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

Tnck ll‘“”lng” w‘th'n b'ocks @SIGGRAPHZOﬂ

eUntil A is reassigned, or control flow

eThis lets us treat a lot of variables as if they were constant within a
basic block.

sony pictures

% nimageworks

Monday, August 15, 2011

Tnck ll‘“”lng” w‘th'n b'ocks @SIGGRAPHZOﬂ

assign A $constB (now we know A’s value)

eUntil A is reassigned, or control flow

eThis lets us treat a lot of variables as if they were constant within a
basic block.

sony pictures

% nimageworks

Monday, August 15, 2011

Tnck ll‘“”lng” w‘th'n b'ocks @SIGGRAPHZOﬂ

assign A $constB (now we know A’s value)
assign A B (now we know A == B)

eUntil A is reassigned, or control flow

eThis lets us treat a lot of variables as if they were constant within a
basic block.

sony pictures

% nimageworks

Monday, August 15, 2011

sony pictures

= imageworks

s’.t’o

o AR

Monday, August 15, 2011

add A $constB $constC assign A $constD

R sony pictures
%, & Imageworks

Monday, August 15, 2011

add A $constB $constC assign A $constD

add A B $const® assign A B

sony pictures

|mageworks

Monday, August 15, 2011

add A $constB $constC assign A $constD

add A B $const® assign A B

div A A $constl nop

sony pictures

|mageworks

Monday, August 15, 2011

add A $constB $constC assign A $constD

add A B $const® assign A B
div A A $constl nop
mul A B $const® assign A $const0

sony pictures

|mageworks

Monday, August 15, 2011

sony pictures

|mageworks

s’.t’o

Monday, August 15, 2011

add A A 0 nop

R sony pictures

- Imageworks

s’.t’o

Monday, August 15, 2011

add A A 0 nop

nop

sony pictures

|mageworks

Monday, August 15, 2011

add A A0 nop

add A A C nop
sub A A C
assign A B nop (B is an alias of A)

sony pictures

|mageworks

Monday, August 15, 2011

add A A0 nop

add A A C nop

sub A A C

assign A B nop (B is an alias of A)

assign A B nop (A & B have the same value)

sony pictures

|mageworks

Monday, August 15, 2011

sony pictures

|mageworks

s’.t’o

Monday, August 15, 2011

Dead code elimination

—entire conditionals, loops
—assignments to variables that aren’t used again

sony pictures

|mageworks

Monday, August 15, 2011

Runtime optimization
eDead code elimination

—entire conditionals, loops
—assignments to variables that aren’t used again

eDead variable elimination

e

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

Runtime optimization

eDead code elimination

—entire conditionals, loops
—assignments to variables that aren’t used again

eDead variable elimination
*Dead shader parameter/output elimination

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

Runtime optimization

eDead code elimination

—entire conditionals, loops
—assignments to variables that aren’t used again

eDead variable elimination
*Dead shader parameter/output elimination
*Dead shader layer elimination

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

Runtime optimization @sneammzoﬂ

eDead code elimination

—entire conditionals, loops
—assignments to variables that aren’t used again

eDead variable elimination

*Dead shader parameter/output elimination

*Dead shader layer elimination

e Coalesce temporaries with nonoverlapping lifetimes

sony pictures

% nimageworks

Monday, August 15, 2011

sony pictures

g, % & imageworks

0

Monday, August 15, 2011

Runtime optimization results
Reduce code & symbols 95-98% before LLVM

—IR gen, LLVM opt, JIT in seconds, not minutes
—LLVM also optimizes its IR

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

Runtime optimization results
Reduce code & symbols 95-98% before LLVM

—IR gen, LLVM opt, JIT in seconds, not minutes
—LLVM also optimizes its IR

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

Runtime optimization results @snaammzoﬂ
Reduce code & symbols 95-98% before LLVM

—IR gen, LLVM opt, JIT in seconds, not minutes
—LLVM also optimizes its IR

¢ 20-25% faster execution than old C shaders
—and safe! (no buffer overflows, crashes, etc.)

sony pictures

% nimageworks

Monday, August 15, 2011

*(“The Amazing Spider-Man” shot omitted, sorry.)

sony pictures

|mageworks

Monday, August 15, 2011

Some stats: frame 1350 @2 siccraptzon

43 different shader masters (distinct .osl/0s0)
* 1885 shader groups (materials)
* 140,964 shader instances (master + params)

eaverage /5 instances per group
eLoad, runtime opt, LLVM IR/opt/JIT;

—-5m22s across all threads (~26s per thread)
—out of a 3h22:00 render with 12 threads
—aside: more time assembling/loading than rendering

sony pictures

% nimageworks

Monday, August 15, 2011

Some stats: frame 1350 € 2 sicaraprion
* Typical shader group pre-optimized:
—-50-100k ops

—20-40k symbols (including temporaries)

e After runtime optimization:
—1k-5k ops
—100-2k symbols
—many shader groups eliminated entirely

sony pictures

% nimageworks

Monday, August 15, 2011

Some stats: frame 1350

e Texture:

—497M texture queries (each of which is a bicubic mipmap lookup,
more when anisotropic)

—~9500 textures (~6700 with unique texels)

—700 GB of texture referenced (not counting dupes)
—Runtime memory: 500 MB cache
—WWW.openimageio.org

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

*|'ve seen shader groups with 1.5M ops
Not uncommon for >> 1 TB texture referenced

sony pictures

|mageworks

Monday, August 15, 2011

Where are we?

*Qur shader library is converted
*Qur shader writers are exclusively writing OSL

e All new shows using OSL
—The Amazing Spider-Man
—Men in Black 3
-0z, the Great and Powerful
—other things | can't say

*\We've ripped out support for C shaders

@ SIGGRAPH2011

sony pictures

% nimageworks

Monday, August 15, 2011

@ SIGGRAPH2011

Open source

eQpensource.imageworks.com
egithub.com/imageworks/OpenShadinglLangage
*“New BSD" license

e This is really our live development tree!

sony pictures

% nimageworks

Monday, August 15, 2011

“‘lﬂ uk“w.YQ @smGRAPHzoﬂ

e Small domain-specific language
e Separate implementation from description
LLVM to JIT native code at runtime

e Extensive runtime optimization when network and
parameters are known

e Qutperforms compiled C shaders
QOpen source

sony pictures

% nimageworks

Monday, August 15, 2011

Acknowledgements / Q&A €2 siccanprzor

«QSL developers: Cliff Stein, Chris Kulla, Alejandro
Conty, Solomon Boulos

*SPI| renderer, shader teams, SW management
e Participants on the mail list

e Contact:

opensource.imageworks.com
lg@imageworks.com

sony pictures

% nimageworks

Monday, August 15, 2011

